Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tender: Accelerating Large Language Models via Tensor Decomposition and Runtime Requantization (2406.12930v1)

Published 16 Jun 2024 in cs.LG and cs.AR

Abstract: LLMs demonstrate outstanding performance in various tasks in machine learning and have thus become one of the most important workloads in today's computing landscape. However, deploying LLM inference poses challenges due to the high compute and memory requirements stemming from the enormous model size and the difficulty of running it in the integer pipelines. In this paper, we present Tender, an algorithm-hardware co-design solution that enables efficient deployment of LLM inference at low precision. Based on our analysis of outlier values in LLMs, we propose a decomposed quantization technique in which the scale factors of decomposed matrices are powers of two apart. The proposed scheme allows us to avoid explicit requantization (i.e., dequantization/quantization) when accumulating the partial sums from the decomposed matrices, with a minimal extension to the commodity tensor compute hardware. Our evaluation shows that Tender achieves higher accuracy and inference performance compared to the state-of-the-art methods while also being significantly less intrusive to the existing accelerators.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jungi Lee (2 papers)
  2. Wonbeom Lee (2 papers)
  3. Jaewoong Sim (7 papers)
Citations (5)