Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automorphisms of free metabelian Lie algebras (2406.12884v1)

Published 30 May 2024 in math.RA and math.GR

Abstract: We show that every automorphism of a free metabelian Lie algebra $M_n$ of rank $n\geq 4$ over an arbitrary field $K$ is almost tame, that is, it is a product of so-called Chein automorphisms (or one-row transformations). Moreover, we show that the group of all automorphisms $\mathrm{Aut}(M_n)$ of $M_n$ of rank $n\geq 4$ over a field $K$ of characteristic $\neq 3$ is generated by all linear automorphisms, as well as one quadratic and one cubic automorphism. The same result holds for fields of any characteristic if $n\geq 5$. We also show that all Chein automorphisms of lower degree $\geq 4$ and all exponential automorphisms of lower degree $\geq 5$ are tame, which contradicts the results of \cite{BN,OE}.

Summary

We haven't generated a summary for this paper yet.