Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MAC: A Benchmark for Multiple Attributes Compositional Zero-Shot Learning (2406.12757v1)

Published 18 Jun 2024 in cs.CV

Abstract: Compositional Zero-Shot Learning (CZSL) aims to learn semantic primitives (attributes and objects) from seen compositions and recognize unseen attribute-object compositions. Existing CZSL datasets focus on single attributes, neglecting the fact that objects naturally exhibit multiple interrelated attributes. Real-world objects often possess multiple interrelated attributes, and current datasets' narrow attribute scope and single attribute labeling introduce annotation biases, undermining model performance and evaluation. To address these limitations, we introduce the Multi-Attribute Composition (MAC) dataset, encompassing 18,217 images and 11,067 compositions with comprehensive, representative, and diverse attribute annotations. MAC includes an average of 30.2 attributes per object and 65.4 objects per attribute, facilitating better multi-attribute composition predictions. Our dataset supports deeper semantic understanding and higher-order attribute associations, providing a more realistic and challenging benchmark for the CZSL task. We also develop solutions for multi-attribute compositional learning and propose the MM-encoder to disentangling the attributes and objects.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Shuo Xu (16 papers)
  2. Sai Wang (79 papers)
  3. Xinyue Hu (27 papers)
  4. Yutian Lin (10 papers)
  5. Bo Du (264 papers)
  6. Yu Wu (196 papers)