Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Next Generation of Phishing Attacks using AI powered Browsers (2406.12547v1)

Published 18 Jun 2024 in cs.CR

Abstract: The increase in the number of phishing demands innovative solutions to safeguard users from phishing attacks. This study explores the development and utilization of a real-time browser extension integrated with machine learning model to improve the detection of phishing websites. The results showed that the model had an accuracy of 98.32%, precision of 98.62%, recall of 97.86%, and an F1-score of 98.24%. When compared to other algorithms like Support Vector Machine, Na\"ive Bayes, Decision Tree, XGBoost, and K Nearest Neighbor, the Random Forest algorithm stood out for its effectiveness in detecting phishing attacks. The zero-day phishing attack detection testing over a 15-day period revealed the model's capability to identify previously unseen threats and thus achieving an overall accuracy rate of 99.11%. Furthermore, the model showed better performance when compared to conventional security measures like Google Safe Browsing. The model had successfully detected phishing URLs that evaded detection by Google safe browsing. This research shows how using machine learning in real-time browser extensions can defend against phishing attacks. It gives useful information about cybersecurity and helps make the internet safer for everyone.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Akshaya Arun (1 paper)
  2. Nasr Abosata (4 papers)

Summary

We haven't generated a summary for this paper yet.