Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MixDiff: Mixing Natural and Synthetic Images for Robust Self-Supervised Representations (2406.12368v2)

Published 18 Jun 2024 in cs.CV

Abstract: This paper introduces MixDiff, a new self-supervised learning (SSL) pre-training framework that combines real and synthetic images. Unlike traditional SSL methods that predominantly use real images, MixDiff uses a variant of Stable Diffusion to replace an augmented instance of a real image, facilitating the learning of cross real-synthetic image representations. Our key insight is that while models trained solely on synthetic images underperform, combining real and synthetic data leads to more robust and adaptable representations. Experiments show MixDiff enhances SimCLR, BarlowTwins, and DINO across various robustness datasets and domain transfer tasks, boosting SimCLR's ImageNet-1K accuracy by 4.56%. Our framework also demonstrates comparable performance without needing any augmentations, a surprising finding in SSL where augmentations are typically crucial.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com