Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
112 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
39 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
5 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

On the Impacts of Contexts on Repository-Level Code Generation (2406.11927v4)

Published 17 Jun 2024 in cs.SE and cs.AI

Abstract: CodeLLMs have gained widespread adoption for code generation tasks, yet their capacity to handle repository-level code generation with complex contextual dependencies remains underexplored. Our work underscores the critical importance of leveraging repository-level contexts to generate executable and functionally correct code. We present RepoExec, a novel benchmark designed to evaluate repository-level code generation, with a focus on three key aspects: executability, functional correctness through comprehensive test case generation, and accurate utilization of cross-file contexts. Our study examines a controlled scenario where developers specify essential code dependencies (contexts), challenging models to integrate them effectively. Additionally, we introduce an instruction-tuned dataset that enhances CodeLLMs' ability to leverage dependencies, along with a new metric, Dependency Invocation Rate (DIR), to quantify context utilization. Experimental results reveal that while pretrained LLMs demonstrate superior performance in terms of correctness, instruction-tuned models excel in context utilization and debugging capabilities. RepoExec offers a comprehensive evaluation framework for assessing code functionality and alignment with developer intent, thereby advancing the development of more reliable CodeLLMs for real-world applications. The dataset and source code are available at https://github.com/FSoft-AI4Code/RepoExec.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.