Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ARNet: Self-Supervised FG-SBIR with Unified Sample Feature Alignment and Multi-Scale Token Recycling (2406.11551v4)

Published 17 Jun 2024 in cs.CV

Abstract: Fine-Grained Sketch-Based Image Retrieval (FG-SBIR) aims to minimize the distance between sketches and corresponding images in the embedding space. However, scalability is hindered by the growing complexity of solutions, mainly due to the abstract nature of fine-grained sketches. In this paper, we propose an effective approach to narrow the gap between the two domains. It mainly facilitates unified mutual information sharing both intra- and inter-samples, rather than treating them as a single feature alignment problem between modalities. Specifically, our approach includes: (i) Employing dual weight-sharing networks to optimize alignment within the sketch and image domain, which also effectively mitigates model learning saturation issues. (ii) Introducing an objective optimization function based on contrastive loss to enhance the model's ability to align features in both intra- and inter-samples. (iii) Presenting a self-supervised Multi-Scale Token Recycling (MSTR) Module featured by recycling discarded patch tokens in multi-scale features, further enhancing representation capability and retrieval performance. Our framework achieves excellent results on CNN- and ViT-based backbones. Extensive experiments demonstrate its superiority over existing methods. We also introduce Cloths-V1, the first professional fashion sketch-image dataset, utilized to validate our method and will be beneficial for other applications.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Jianan Jiang (9 papers)
  2. Di Wu (477 papers)
  3. Zhilin Jiang (1 paper)
  4. Weiren Yu (8 papers)
  5. Hao Tang (379 papers)

Summary

We haven't generated a summary for this paper yet.