Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Operator Deep Smoothing for Implied Volatility (2406.11520v3)

Published 17 Jun 2024 in q-fin.CP

Abstract: We devise a novel method for nowcasting implied volatility based on neural operators. Better known as implied volatility smoothing in the financial industry, nowcasting of implied volatility means constructing a smooth surface that is consistent with the prices presently observed on a given option market. Option price data arises highly dynamically in ever-changing spatial configurations, which poses a major limitation to foundational machine learning approaches using classical neural networks. While large models in language and image processing deliver breakthrough results on vast corpora of raw data, in financial engineering the generalization from big historical datasets has been hindered by the need for considerable data pre-processing. In particular, implied volatility smoothing has remained an instance-by-instance, hands-on process both for neural network-based and traditional parametric strategies. Our general operator deep smoothing approach, instead, directly maps observed data to smoothed surfaces. We adapt the graph neural operator architecture to do so with high accuracy on ten years of raw intraday S&P 500 options data, using a single model instance. The trained operator adheres to critical no-arbitrage constraints and is robust with respect to subsampling of inputs (occurring in practice in the context of outlier removal). We provide extensive historical benchmarks and showcase the generalization capability of our approach in a comparison with classical neural networks and SVI, an industry standard parametrization for implied volatility. The operator deep smoothing approach thus opens up the use of neural networks on large historical datasets in financial engineering.

Summary

We haven't generated a summary for this paper yet.