Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Revisiting Spurious Correlation in Domain Generalization (2406.11517v1)

Published 17 Jun 2024 in cs.LG and cs.AI

Abstract: Without loss of generality, existing machine learning techniques may learn spurious correlation dependent on the domain, which exacerbates the generalization of models in out-of-distribution (OOD) scenarios. To address this issue, recent works build a structural causal model (SCM) to describe the causality within data generation process, thereby motivating methods to avoid the learning of spurious correlation by models. However, from the machine learning viewpoint, such a theoretical analysis omits the nuanced difference between the data generation process and representation learning process, resulting in that the causal analysis based on the former cannot well adapt to the latter. To this end, we explore to build a SCM for representation learning process and further conduct a thorough analysis of the mechanisms underlying spurious correlation. We underscore that adjusting erroneous covariates introduces bias, thus necessitating the correct selection of spurious correlation mechanisms based on practical application scenarios. In this regard, we substantiate the correctness of the proposed SCM and further propose to control confounding bias in OOD generalization by introducing a propensity score weighted estimator, which can be integrated into any existing OOD method as a plug-and-play module. The empirical results comprehensively demonstrate the effectiveness of our method on synthetic and large-scale real OOD datasets.

Summary

We haven't generated a summary for this paper yet.