Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 31 tok/s Pro
GPT-4o 97 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

Large Language Models and Knowledge Graphs for Astronomical Entity Disambiguation (2406.11400v1)

Published 17 Jun 2024 in cs.CL and astro-ph.IM

Abstract: This paper presents an experiment conducted during a hackathon, focusing on using LLMs and knowledge graph clustering to extract entities and relationships from astronomical text. The study demonstrates an approach to disambiguate entities that can appear in various contexts within the astronomical domain. By collecting excerpts around specific entities and leveraging the GPT-4 LLM, relevant entities and relationships are extracted. The extracted information is then used to construct a knowledge graph, which is clustered using the Leiden algorithm. The resulting Leiden communities are utilized to identify the percentage of association of unknown excerpts to each community, thereby enabling disambiguation. The experiment showcases the potential of combining LLMs and knowledge graph clustering techniques for information extraction in astronomical research. The results highlight the effectiveness of the approach in identifying and disambiguating entities, as well as grouping them into meaningful clusters based on their relationships.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)