Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximation Algorithms for Smallest Intersecting Balls (2406.11369v2)

Published 17 Jun 2024 in cs.CG and cs.DS

Abstract: We study a general smallest intersecting ball problem and its soft-margin variant in high-dimensional Euclidean spaces for input objects that are compact and convex. These two problems link and unify a series of fundamental problems in computational geometry and machine learning, including smallest enclosing ball, polytope distance, intersection radius, $\ell_1$-loss support vector machine, $\ell_1$-loss support vector data description, and so on. Leveraging our novel framework for solving zero-sum games over symmetric cones, we propose general approximation algorithms for the two problems, where implementation details are presented for specific inputs of convex polytopes, reduced polytopes, axis-aligned bounding boxes, balls, and ellipsoids. For most of these inputs, our algorithms are the first results in high-dimensional spaces, and also the first approximation methods. Experimental results show that our algorithms can solve large-scale input instances efficiently.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com