Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Problematic Tokens: Tokenizer Bias in Large Language Models (2406.11214v3)

Published 17 Jun 2024 in cs.CL

Abstract: Recent advancements in LLMs(LLMs), such as GPT-4 and GPT-4o, have shown exceptional performance, especially in languages with abundant resources like English, thanks to extensive datasets that ensure robust training. Conversely, these models exhibit limitations when processing under-resourced languages such as Chinese and Korean, where issues including hallucinatory responses remain prevalent. This paper traces the roots of these disparities to the tokenization process inherent to these models. Specifically, it explores how the tokenizers vocabulary, often used to speed up the tokenization process and reduce tokens but constructed independently of the actual model training data, inadequately represents non-English languages. This misrepresentation results in the propagation of under-trained or untrained tokens, which perpetuate biases and pose serious concerns related to data security and ethical standards. We aim to dissect the tokenization mechanics of GPT-4o, illustrating how its simplified token-handling methods amplify these risks and offer strategic solutions to mitigate associated security and ethical issues. Through this study, we emphasize the critical need to rethink tokenization frameworks to foster more equitable and secure AI technologies. The code and data are available at https://github.com/yeyimilk/LLMGPT4o

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Jin Yang (73 papers)
  2. Zhiqiang Wang (107 papers)
  3. Yanbin Lin (6 papers)
  4. Zunduo Zhao (4 papers)