Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Small ball probabilities for the passage time in planar first-passage percolation (2406.10971v2)

Published 16 Jun 2024 in math.PR

Abstract: We study planar first-passage percolation with independent weights whose common distribution is supported in $(0,\infty)$ and is absolutely continuous with respect to Lebesgue measure. We prove that the passage time from $x$ to $y$ denoted by $T(x,y)$ satisfies $$\max _{a\ge 0} \mathbb P \big( T(x,y)\in [a,a+1] \big) \le \frac{C}{\sqrt{\log |x-y|}},$$ answering a question posed by Ahlberg and de la Riva. This estimate recovers earlier results on the fluctuations of the passage time by Newman--Piza, Pemantle--Peres, and Chatterjee.

Summary

We haven't generated a summary for this paper yet.