Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Really Unlearned? Verifying Machine Unlearning via Influential Sample Pairs (2406.10953v1)

Published 16 Jun 2024 in cs.CR

Abstract: Machine unlearning enables pre-trained models to eliminate the effects of partial training samples. Previous research has mainly focused on proposing efficient unlearning strategies. However, the verification of machine unlearning, or in other words, how to guarantee that a sample has been successfully unlearned, has been overlooked for a long time. Existing verification schemes typically rely on machine learning attack techniques, such as backdoor or membership inference attacks. As these techniques are not formally designed for verification, they are easily bypassed when an untrustworthy MLaaS undergoes rapid fine-tuning to merely meet the verification conditions, rather than executing real unlearning. In this paper, we propose a formal verification scheme, IndirectVerify, to determine whether unlearning requests have been successfully executed. We design influential sample pairs: one referred to as trigger samples and the other as reaction samples. Users send unlearning requests regarding trigger samples and use reaction samples to verify if the unlearning operation has been successfully carried out. We propose a perturbation-based scheme to generate those influential sample pairs. The objective is to perturb only a small fraction of trigger samples, leading to the reclassification of reaction samples. This indirect influence will be used for our verification purposes. In contrast to existing schemes that employ the same samples for all processes, our scheme, IndirectVerify, provides enhanced robustness, making it less susceptible to bypassing processes.

Summary

We haven't generated a summary for this paper yet.