From Data Quality for AI to AI for Data Quality: A Systematic Review of Tools for AI-Augmented Data Quality Management in Data Warehouses (2406.10940v3)
Abstract: While high data quality (DQ) is critical for analytics, compliance, and AI performance, data quality management (DQM) remains a complex, resource-intensive, and often manual process. This study investigates the extent to which existing tools support AI-augmented data quality management (DQM) in data warehouse environments. To this end, we conduct a systematic review of 151 DQ tools to evaluate their automation capabilities, particularly in detecting and recommending DQ rules in data warehouses -- a key component of modern data ecosystems. Using a multi-phase screening process based on functionality, trialability, regulatory compliance (e.g., GDPR), and architectural compatibility with data warehouses, only 10 tools met the criteria for AI-augmented DQM. The analysis reveals that most tools emphasize data cleansing and preparation for AI, rather than leveraging AI to improve DQ itself. Although metadata- and ML-based rule detection techniques are present, features such as SQL-based rule specification, reconciliation logic, and explainability of AI-driven recommendations remain scarce. This study offers practical guidance for tool selection and outlines critical design requirements for next-generation AI-driven DQ solutions -- advocating a paradigm shift from data quality for AI'' to
AI for data quality management''.