Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A New Realistic Platform for Benchmarking and Performance Evaluation of DRL-Driven and Reconfigurable SFC Provisioning Solutions (2406.10356v1)

Published 14 Jun 2024 in cs.NI

Abstract: Service Function Chain (SFC) provisioning stands as a pivotal technology in the realm of 5G and future networks. Its essence lies in orchestrating VNFs (Virtual Network Functions) in a specified sequence for different types of SFC requests. Efficient SFC provisioning requires fast, reliable, and automatic VNFs' placements, especially in a network where massive amounts of SFC requests are generated having ultra-reliable and low latency communication (URLLC) requirements. Although much research has been done in this area, including AI and Machine Learning (ML)-based solutions, this work presents an advanced Deep Reinforcement Learning (DRL)-based simulation model for SFC provisioning that illustrates a realistic environment. The proposed simulation platform can handle massive heterogeneous SFC requests having different characteristics in terms of VNFs chain, bandwidth, and latency constraints. Also, the model is flexible to apply to networks having different configurations in terms of the number of data centers (DCs), logical connections among DCs, and service demands. The simulation model components and the workflow of processing VNFs in the SFC requests are described in detail. Numerical results demonstrate that using this simulation setup and proposed algorithm, a realistic SFC provisioning can be achieved with an optimal SFC acceptance ratio while minimizing the E2E latency and resource consumption.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com