Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semantic-Enhanced Relational Metric Learning for Recommender Systems (2406.10246v1)

Published 7 Jun 2024 in cs.IR and cs.AI

Abstract: Recently, relational metric learning methods have been received great attention in recommendation community, which is inspired by the translation mechanism in knowledge graph. Different from the knowledge graph where the entity-to-entity relations are given in advance, historical interactions lack explicit relations between users and items in recommender systems. Currently, many researchers have succeeded in constructing the implicit relations to remit this issue. However, in previous work, the learning process of the induction function only depends on a single source of data (i.e., user-item interaction) in a supervised manner, resulting in the co-occurrence relation that is free of any semantic information. In this paper, to tackle the above problem in recommender systems, we propose a joint Semantic-Enhanced Relational Metric Learning (SERML) framework that incorporates the semantic information. Specifically, the semantic signal is first extracted from the target reviews containing abundant item features and personalized user preferences. A novel regression model is then designed via leveraging the extracted semantic signal to improve the discriminative ability of original relation-based training process. On four widely-used public datasets, experimental results demonstrate that SERML produces a competitive performance compared with several state-of-the-art methods in recommender systems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Mingming Li (17 papers)
  2. Fuqing Zhu (8 papers)
  3. Feng Yuan (262 papers)
  4. Songlin Hu (80 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com