Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Know the Unknown: An Uncertainty-Sensitive Method for LLM Instruction Tuning (2406.10099v2)

Published 14 Jun 2024 in cs.CL

Abstract: LLMs have demonstrated remarkable capabilities but still face challenges such as hallucinations. One potential reason for hallucinations is the lack of relevant knowledge or context. Thus, a promising solution involves instructing LLMs to respond with "I do not know" when a question falls outside their knowledge domain or the provided context. However, in this work, we observed that LLMs struggle to admit their lack of knowledge, primarily due to existing instruction datasets designed to encourage specific answers. To improve models' capability to recognize the boundaries of their knowledge, we propose a novel approach called uncertainty-sensitive tuning. This method involves two-stage training designed for uncertainty recognition and prompt-sensitive activation. In the first stage, we guide the LLM to reject unknown questions. In the second stage, we force the model to follow the instructions by incorporating designed causal instructions. The experimental results demonstrate that our proposed uncertainty-sensitive tuning method enhance the model's ability to identify areas of uncertainty. Specifically, it achieves a substantial improvement of up to 34.7% in handling questions involving knowledge gaps compared to the original model. Moreover, our finetuned models even outperform GPT-4, exhibiting an overall performance improvement of up to 4.2%.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jiaqi Li (142 papers)
  2. Yixuan Tang (17 papers)
  3. Yi Yang (855 papers)
Citations (4)
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets