Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Knowledge Editing in Language Models via Adapted Direct Preference Optimization (2406.09920v2)

Published 14 Jun 2024 in cs.CL and cs.AI

Abstract: LLMs can become outdated over time as they may lack updated world knowledge, leading to factual knowledge errors and gaps. Knowledge Editing (KE) aims to overcome this challenge using weight updates that do not require expensive retraining. We propose treating KE as an LLM alignment problem. Toward this goal, we introduce Knowledge Direct Preference Optimization (KDPO), a variation of the Direct Preference Optimization (DPO) that is more effective for knowledge modifications. Our method is based on an online approach that continually updates the knowledge stored in the model. We use the current knowledge as a negative sample and the new knowledge we want to introduce as a positive sample in a process called DPO. We also use teacher-forcing for negative sample generation and optimize using the positive sample, which helps maintain localized changes. We tested our KE method on various datasets and models, comparing it to several cutting-edge methods, with 100 and 500 sequential edits. Additionally, we conducted an ablation study comparing our method to the standard DPO approach. Our experimental results show that our modified DPO method allows for more refined KE, achieving similar or better performance compared to previous methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Amit Rozner (5 papers)
  2. Barak Battash (10 papers)
  3. Lior Wolf (217 papers)
  4. Ofir Lindenbaum (47 papers)
Citations (5)
X Twitter Logo Streamline Icon: https://streamlinehq.com