Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pcc-tuning: Breaking the Contrastive Learning Ceiling in Semantic Textual Similarity (2406.09790v2)

Published 14 Jun 2024 in cs.CL

Abstract: Semantic Textual Similarity (STS) constitutes a critical research direction in computational linguistics and serves as a key indicator of the encoding capabilities of embedding models. Driven by advances in pre-trained LLMs and contrastive learning, leading sentence representation methods have reached an average Spearman's correlation score of approximately 86 across seven STS benchmarks in SentEval. However, further progress has become increasingly marginal, with no existing method attaining an average score higher than 86.5 on these tasks. This paper conducts an in-depth analysis of this phenomenon and concludes that the upper limit for Spearman's correlation scores under contrastive learning is 87.5. To transcend this ceiling, we propose an innovative approach termed Pcc-tuning, which employs Pearson's correlation coefficient as a loss function to refine model performance beyond contrastive learning. Experimental results demonstrate that Pcc-tuning can markedly surpass previous state-of-the-art strategies with only a minimal amount of fine-grained annotated samples.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets