Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
Gemini 2.5 Pro Premium
51 tokens/sec
GPT-5 Medium
34 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
115 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
453 tokens/sec
Kimi K2 via Groq Premium
140 tokens/sec
2000 character limit reached

$S^3$ -- Semantic Signal Separation (2406.09556v3)

Published 13 Jun 2024 in cs.LG, cs.CL, and stat.ML

Abstract: Topic models are useful tools for discovering latent semantic structures in large textual corpora. Recent efforts have been oriented at incorporating contextual representations in topic modeling and have been shown to outperform classical topic models. These approaches are typically slow, volatile, and require heavy preprocessing for optimal results. We present Semantic Signal Separation ($S3$), a theory-driven topic modeling approach in neural embedding spaces. $S3$ conceptualizes topics as independent axes of semantic space and uncovers these by decomposing contextualized document embeddings using Independent Component Analysis. Our approach provides diverse and highly coherent topics, requires no preprocessing, and is demonstrated to be the fastest contextual topic model, being, on average, 4.5x faster than the runner-up BERTopic. We offer an implementation of $S3$, and all contextual baselines, in the Turftopic Python package.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.