Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Autoregressive Training with Dynamic Oracles (2406.09393v1)

Published 13 Jun 2024 in cs.CL, cs.AI, and cs.LG

Abstract: Many tasks within NLP can be framed as sequential decision problems, ranging from sequence tagging to text generation. However, for many tasks, the standard training methods, including maximum likelihood (teacher forcing) and scheduled sampling, suffer from exposure bias and a mismatch between metrics employed during training and inference. DAgger provides a solution to mitigate these problems, yet it requires a metric-specific dynamic oracle algorithm, which does not exist for many common metrics like span-based F1, ROUGE, and BLEU. In this paper, we develop these novel dynamic oracles and show they maintain DAgger's no-regret guarantee for decomposable metrics like span-based F1. We evaluate the algorithm's performance on named entity recognition (NER), text summarization, and machine translation (MT). While DAgger with dynamic oracle yields less favorable results in our MT experiments, it outperforms the baseline techniques in NER and text summarization.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com