Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Meta-Learning an Evolvable Developmental Encoding (2406.09020v2)

Published 13 Jun 2024 in cs.NE

Abstract: Representations for black-box optimisation methods (such as evolutionary algorithms) are traditionally constructed using a delicate manual process. This is in contrast to the representation that maps DNAs to phenotypes in biological organisms, which is at the hear of biological complexity and evolvability. Additionally, the core of this process is fundamentally the same across nearly all forms of life, reflecting their shared evolutionary origin. Generative models have shown promise in being learnable representations for black-box optimisation but they are not per se designed to be easily searchable. Here we present a system that can meta-learn such representation by directly optimising for a representation's ability to generate quality-diversity. In more detail, we show our meta-learning approach can find one Neural Cellular Automata, in which cells can attend to different parts of a "DNA" string genome during development, enabling it to grow different solvable 2D maze structures. We show that the evolved genotype-to-phenotype mappings become more and more evolvable, not only resulting in a faster search but also increasing the quality and diversity of grown artefacts.

Summary

We haven't generated a summary for this paper yet.