Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pruning is Optimal for Learning Sparse Features in High-Dimensions (2406.08658v1)

Published 12 Jun 2024 in stat.ML and cs.LG

Abstract: While it is commonly observed in practice that pruning networks to a certain level of sparsity can improve the quality of the features, a theoretical explanation of this phenomenon remains elusive. In this work, we investigate this by demonstrating that a broad class of statistical models can be optimally learned using pruned neural networks trained with gradient descent, in high-dimensions. We consider learning both single-index and multi-index models of the form $y = \sigma*(\boldsymbol{V}{\top} \boldsymbol{x}) + \epsilon$, where $\sigma*$ is a degree-$p$ polynomial, and $\boldsymbol{V} \in \mathbbm{R}{d \times r}$ with $r \ll d$, is the matrix containing relevant model directions. We assume that $\boldsymbol{V}$ satisfies a certain $\ell_q$-sparsity condition for matrices and show that pruning neural networks proportional to the sparsity level of $\boldsymbol{V}$ improves their sample complexity compared to unpruned networks. Furthermore, we establish Correlational Statistical Query (CSQ) lower bounds in this setting, which take the sparsity level of $\boldsymbol{V}$ into account. We show that if the sparsity level of $\boldsymbol{V}$ exceeds a certain threshold, training pruned networks with a gradient descent algorithm achieves the sample complexity suggested by the CSQ lower bound. In the same scenario, however, our results imply that basis-independent methods such as models trained via standard gradient descent initialized with rotationally invariant random weights can provably achieve only suboptimal sample complexity.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com