Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Commonsense-T2I Challenge: Can Text-to-Image Generation Models Understand Commonsense? (2406.07546v2)

Published 11 Jun 2024 in cs.CV, cs.AI, and cs.CL

Abstract: We present a novel task and benchmark for evaluating the ability of text-to-image(T2I) generation models to produce images that align with commonsense in real life, which we call Commonsense-T2I. Given two adversarial text prompts containing an identical set of action words with minor differences, such as "a lightbulb without electricity" v.s. "a lightbulb with electricity", we evaluate whether T2I models can conduct visual-commonsense reasoning, e.g. produce images that fit "the lightbulb is unlit" vs. "the lightbulb is lit" correspondingly. Commonsense-T2I presents an adversarial challenge, providing pairwise text prompts along with expected outputs. The dataset is carefully hand-curated by experts and annotated with fine-grained labels, such as commonsense type and likelihood of the expected outputs, to assist analyzing model behavior. We benchmark a variety of state-of-the-art (sota) T2I models and surprisingly find that, there is still a large gap between image synthesis and real life photos--even the DALL-E 3 model could only achieve 48.92% on Commonsense-T2I, and the stable diffusion XL model only achieves 24.92% accuracy. Our experiments show that GPT-enriched prompts cannot solve this challenge, and we include a detailed analysis about possible reasons for such deficiency. We aim for Commonsense-T2I to serve as a high-quality evaluation benchmark for T2I commonsense checking, fostering advancements in real life image generation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Xingyu Fu (22 papers)
  2. Muyu He (2 papers)
  3. Yujie Lu (42 papers)
  4. William Yang Wang (254 papers)
  5. Dan Roth (222 papers)
Citations (4)
X Twitter Logo Streamline Icon: https://streamlinehq.com