Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pattern containment in random permutations (2406.07311v1)

Published 11 Jun 2024 in math.CO

Abstract: This paper studies permutation statistics that count occurrences of patterns. Their expected values on a product of $t$ permutations chosen randomly from $\Gamma \subseteq S_{n}$, where $\Gamma$ is a union of conjugacy classes, are considered. Hultman has described a method for computing such an expected value, denoted $\mathbb{E}{\Gamma}(s,t)$, of a statistic $s$, when $\Gamma$ is a union of conjugacy classes of $S{n}$. The only prerequisite is that the mean of $s$ over the conjugacy classes is written as a linear combination of irreducible characters of $S_{n}$. Therefore, the main focus of this article is to express the means of pattern-counting statistics as such linear combinations. A procedure for calculating such expressions for statistics counting occurrences of classical and vincular patterns of length 3 is developed, and is then used to calculate all these expressions. The results can be used to compute $\mathbb{E}{\Gamma}(s,t)$ for all the above statistics, and for all functions on $S{n}$ that are linear combinations of them.

Summary

We haven't generated a summary for this paper yet.