Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inferring the dependence graph density of binary graphical models in high dimension (2406.07066v2)

Published 11 Jun 2024 in math.ST, math.PR, and stat.TH

Abstract: We consider a system of binary interacting chains describing the dynamics of a group of $N$ components that, at each time unit, either send some signal to the others or remain silent otherwise. The interactions among the chains are encoded by a directed Erd\"os-R\'enyi random graph with unknown parameter $ p \in (0, 1) .$ Moreover, the system is structured within two populations (excitatory chains versus inhibitory ones) which are coupled via a mean field interaction on the underlying Erd\"os-R\'enyi graph. In this paper, we address the question of inferring the connectivity parameter $p$ based only on the observation of the interacting chains over $T$ time units. In our main result, we show that the connectivity parameter $p$ can be estimated with rate $N{-1/2}+N{1/2}/T+(\log(T)/T){1/2}$ through an easy-to-compute estimator. Our analysis relies on a precise study of the spatio-temporal decay of correlations of the interacting chains. This is done through the study of coalescing random walks defining a backward regeneration representation of the system. Interestingly, we also show that this backward regeneration representation allows us to perfectly sample the system of interacting chains (conditionally on each realization of the underlying Erd\"os-R\'enyi graph) from its stationary distribution. These probabilistic results have an interest in its own.

Summary

We haven't generated a summary for this paper yet.