Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SignMusketeers: An Efficient Multi-Stream Approach for Sign Language Translation at Scale (2406.06907v1)

Published 11 Jun 2024 in cs.CL, cs.AI, cs.CV, and cs.LG

Abstract: A persistent challenge in sign language video processing, including the task of sign language to written language translation, is how we learn representations of sign language in an effective and efficient way that can preserve the important attributes of these languages, while remaining invariant to irrelevant visual differences. Informed by the nature and linguistics of signed languages, our proposed method focuses on just the most relevant parts in a signing video: the face, hands and body posture of the signer. However, instead of using pose estimation coordinates from off-the-shelf pose tracking models, which have inconsistent performance for hands and faces, we propose to learn the complex handshapes and rich facial expressions of sign languages in a self-supervised fashion. Our approach is based on learning from individual frames (rather than video sequences) and is therefore much more efficient than prior work on sign language pre-training. Compared to a recent model that established a new state of the art in sign language translation on the How2Sign dataset, our approach yields similar translation performance, using less than 3\% of the compute.

Citations (1)

Summary

We haven't generated a summary for this paper yet.