Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling language contact with the Iterated Learning Model (2406.06878v2)

Published 11 Jun 2024 in cs.CL

Abstract: Contact between languages has the potential to transmit vocabulary and other language features; however, this does not always happen. Here, an iterated learning model is used to examine, in a simple way, the resistance of languages to change during language contact. Iterated learning models are agent-based models of language change, they demonstrate that languages that are expressive and compositional arise spontaneously as a consequence of a language transmission bottleneck. A recently introduced type of iterated learning model, the Semi-Supervised ILM is used to simulate language contact. These simulations do not include many of the complex factors involved in language contact and do not model a population of speakers; nonetheless the model demonstrates that the dynamics which lead languages in the model to spontaneously become expressive and compositional, also cause a language to maintain its core traits even after mixing with another language.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com