Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal control for a SIR model with limited hospitalised patients (2406.06770v1)

Published 10 Jun 2024 in math.OC and physics.soc-ph

Abstract: This paper analyses the optimal control of infectious disease propagation using a classic susceptible-infected-recovered (SIR) model characterised by permanent immunity and the absence of available vaccines. The control is performed over a time-dependent mean reproduction number, in order to minimise the cumulative number of ever-infected individuals (recovered), under different constraints. We consider constraints on isolation measures ranging from partial lockdown to non-intervention, as well as the social and economic costs associated with such isolation, and the capacity limitations of intensive care units that limits the number of infected individuals to a maximum allowed value. We rigorously derive an optimal quarantine strategy based on necessary optimality conditions. The obtained optimal strategy is of a boundary-bang type, comprising three phases: an initial phase with no intervention, a second phase maintaining the infected population at its maximum possible value, and a final phase of partial lockdown applied over a single interval. The optimal policy is further refined by optimising the transition times between these phases. We show that these results are in excellent agreement with the numerical solution of the problem.

Citations (1)

Summary

We haven't generated a summary for this paper yet.