Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
81 tokens/sec
Gemini 2.5 Pro Premium
33 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
78 tokens/sec
DeepSeek R1 via Azure Premium
92 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
192 tokens/sec
2000 character limit reached

Benchmarking Neural Decoding Backbones towards Enhanced On-edge iBCI Applications (2406.06626v1)

Published 8 Jun 2024 in cs.LG, cs.AI, cs.HC, and eess.SP

Abstract: Traditional invasive Brain-Computer Interfaces (iBCIs) typically depend on neural decoding processes conducted on workstations within laboratory settings, which prevents their everyday usage. Implementing these decoding processes on edge devices, such as the wearables, introduces considerable challenges related to computational demands, processing speed, and maintaining accuracy. This study seeks to identify an optimal neural decoding backbone that boasts robust performance and swift inference capabilities suitable for edge deployment. We executed a series of neural decoding experiments involving nonhuman primates engaged in random reaching tasks, evaluating four prospective models, Gated Recurrent Unit (GRU), Transformer, Receptance Weighted Key Value (RWKV), and Selective State Space model (Mamba), across several metrics: single-session decoding, multi-session decoding, new session fine-tuning, inference speed, calibration speed, and scalability. The findings indicate that although the GRU model delivers sufficient accuracy, the RWKV and Mamba models are preferable due to their superior inference and calibration speeds. Additionally, RWKV and Mamba comply with the scaling law, demonstrating improved performance with larger data sets and increased model sizes, whereas GRU shows less pronounced scalability, and the Transformer model requires computational resources that scale prohibitively. This paper presents a thorough comparative analysis of the four models in various scenarios. The results are pivotal in pinpointing an optimal backbone that can handle increasing data volumes and is viable for edge implementation. This analysis provides essential insights for ongoing research and practical applications in the field.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube