Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LinkQ: An LLM-Assisted Visual Interface for Knowledge Graph Question-Answering (2406.06621v1)

Published 7 Jun 2024 in cs.CL, cs.AI, and cs.LG

Abstract: We present LinkQ, a system that leverages a LLM to facilitate knowledge graph (KG) query construction through natural language question-answering. Traditional approaches often require detailed knowledge of complex graph querying languages, limiting the ability for users -- even experts -- to acquire valuable insights from KG data. LinkQ simplifies this process by first interpreting a user's question, then converting it into a well-formed KG query. By using the LLM to construct a query instead of directly answering the user's question, LinkQ guards against the LLM hallucinating or generating false, erroneous information. By integrating an LLM into LinkQ, users are able to conduct both exploratory and confirmatory data analysis, with the LLM helping to iteratively refine open-ended questions into precise ones. To demonstrate the efficacy of LinkQ, we conducted a qualitative study with five KG practitioners and distill their feedback. Our results indicate that practitioners find LinkQ effective for KG question-answering, and desire future LLM-assisted systems for the exploratory analysis of graph databases.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com