Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Notes on Kalman Filter (KF, EKF, ESKF, IEKF, IESKF) (2406.06427v3)

Published 10 Jun 2024 in cs.RO

Abstract: The Kalman Filter (KF) is a powerful mathematical tool widely used for state estimation in various domains, including Simultaneous Localization and Mapping (SLAM). This paper presents an in-depth introduction to the Kalman Filter and explores its several extensions: the Extended Kalman Filter (EKF), the Error-State Kalman Filter (ESKF), the Iterated Extended Kalman Filter (IEKF), and the Iterated Error-State Kalman Filter (IESKF). Each variant is meticulously examined, with detailed derivations of their mathematical formulations and discussions on their respective advantages and limitations. By providing a comprehensive overview of these techniques, this paper aims to offer valuable insights into their applications in SLAM and enhance the understanding of state estimation methodologies in complex environments.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com