Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 43 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 225 tok/s Pro
2000 character limit reached

Generative diffusion models for synthetic trajectories of heavy and light particles in turbulence (2406.05008v1)

Published 7 Jun 2024 in physics.flu-dyn

Abstract: Heavy and light particles are commonly found in many natural phenomena and industrial processes, such as suspensions of bubbles, dust, and droplets in incompressible turbulent flows. Based on a recent machine learning approach using a diffusion model that successfully generated single tracer trajectories in three-dimensional turbulence and passed most statistical benchmarks across time scales, we extend this model to include heavy and light particles. Given the particle type - tracer, light, or heavy - the model can generate synthetic, realistic trajectories with correct fat-tail distributions for acceleration, anomalous power laws, and scale dependent local slope properties. This work paves the way for future exploration of the use of diffusion models to produce high-quality synthetic datasets for different flow configurations, potentially allowing interpolation between different setups and adaptation to new conditions.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube