Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hamiltonian formulation and aspects of integrability of generalised hydrodynamics (2406.04924v2)

Published 7 Jun 2024 in nlin.PS, cond-mat.stat-mech, math-ph, math.MP, and nlin.SI

Abstract: Generalised Hydrodynamics (GHD) describes the large-scale inhomogeneous dynamics of integrable (or close to integrable) systems in one dimension of space, based on a central equation for the fluid density or quasi-particle density: the GHD equation. We consider a new, general form of the GHD equation: we allow for spatially extended interaction kernels, generalising previous constructions. We show that the GHD equation, in our general form and hence also in its conventional form, is Hamiltonian. This holds also including force terms representing inhomogeneous external potentials coupled to conserved densities. To this end, we introduce a new Poisson bracket on functionals of the fluid density, which is seen as our dynamical field variable. The total energy is the Hamiltonian whose flow under this Poisson bracket generates the GHD equation. The fluid density depends on two (real and spectral) variables so the GHD equation can be seen as a $2+1$-dimensional classical field theory. In its $1+1$-dimensional reduction corresponding to the case without external forces, we further show the system admits an infinite set of conserved quantities that are in involution for our Poisson bracket, hinting at integrability of this field theory.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com