Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence Analysis of Adaptive Gradient Methods under Refined Smoothness and Noise Assumptions (2406.04592v2)

Published 7 Jun 2024 in math.OC, cs.LG, and stat.ML

Abstract: Adaptive gradient methods, such as AdaGrad, are among the most successful optimization algorithms for neural network training. While these methods are known to achieve better dimensional dependence than stochastic gradient descent (SGD) under favorable geometry for stochastic convex optimization, the theoretical justification for their success in stochastic non-convex optimization remains elusive. In fact, under standard assumptions of Lipschitz gradients and bounded noise variance, it is known that SGD is worst-case optimal (up to absolute constants) in terms of finding a near-stationary point with respect to the $\ell_2$-norm, making further improvements impossible. Motivated by this limitation, we introduce refined assumptions on the smoothness structure of the objective and the gradient noise variance, which better suit the coordinate-wise nature of adaptive gradient methods. Moreover, we adopt the $\ell_1$-norm of the gradient as the stationarity measure, as opposed to the standard $\ell_2$-norm, to align with the coordinate-wise analysis and obtain tighter convergence guarantees for AdaGrad. Under these new assumptions and the $\ell_1$-norm stationarity measure, we establish an upper bound on the convergence rate of AdaGrad and a corresponding lower bound for SGD. In particular, for certain configurations of problem parameters, we show that the iteration complexity of AdaGrad outperforms SGD by a factor of $d$. To the best of our knowledge, this is the first result to demonstrate a provable gain of adaptive gradient methods over SGD in a non-convex setting. We also present supporting lower bounds, including one specific to AdaGrad and one applicable to general deterministic first-order methods, showing that our upper bound for AdaGrad is tight and unimprovable up to a logarithmic factor under certain conditions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Devyani Maladkar (1 paper)
  2. Ruichen Jiang (20 papers)
  3. Aryan Mokhtari (95 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com