Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clipping Improves Adam-Norm and AdaGrad-Norm when the Noise Is Heavy-Tailed (2406.04443v2)

Published 6 Jun 2024 in cs.LG and math.OC

Abstract: Methods with adaptive stepsizes, such as AdaGrad and Adam, are essential for training modern Deep Learning models, especially LLMs. Typically, the noise in the stochastic gradients is heavy-tailed for the later ones. Gradient clipping provably helps to achieve good high-probability convergence for such noises. However, despite the similarity between AdaGrad/Adam and Clip-SGD, the current understanding of the high-probability convergence of AdaGrad/Adam-type methods is limited in this case. In this work, we prove that AdaGrad/Adam (and their delayed version) can have provably bad high-probability convergence if the noise is heavy-tailed. We also show that gradient clipping fixes this issue, i.e., we derive new high-probability convergence bounds with polylogarithmic dependence on the confidence level for AdaGrad-Norm and Adam-Norm with clipping and with/without delay for smooth convex/non-convex stochastic optimization with heavy-tailed noise. Our empirical evaluations highlight the superiority of clipped versions of AdaGrad/Adam-Norm in handling the heavy-tailed noise.

Citations (1)

Summary

We haven't generated a summary for this paper yet.