Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Speed of Light Exact Greedy Decoding for RNN-T Speech Recognition Models on GPU (2406.03791v1)

Published 6 Jun 2024 in cs.LG

Abstract: The vast majority of inference time for RNN Transducer (RNN-T) models today is spent on decoding. Current state-of-the-art RNN-T decoding implementations leave the GPU idle ~80% of the time. Leveraging a new CUDA 12.4 feature, CUDA graph conditional nodes, we present an exact GPU-based implementation of greedy decoding for RNN-T models that eliminates this idle time. Our optimizations speed up a 1.1 billion parameter RNN-T model end-to-end by a factor of 2.5x. This technique can applied to the "label looping" alternative greedy decoding algorithm as well, achieving 1.7x and 1.4x end-to-end speedups when applied to 1.1 billion parameter RNN-T and Token and Duration Transducer models respectively. This work enables a 1.1 billion parameter RNN-T model to run only 16% slower than a similarly sized CTC model, contradicting the common belief that RNN-T models are not suitable for high throughput inference. The implementation is available in NVIDIA NeMo.

Citations (3)

Summary

We haven't generated a summary for this paper yet.