Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Quantum Mechanics of Particles Constrained to Spiral Curves with Application to Polyene Chains (2406.03590v2)

Published 5 Jun 2024 in math-ph, cond-mat.mes-hall, and math.MP

Abstract: Context: Due to advances in synthesizing lower dimensional materials there is the challenge of finding the wave equation that effectively describes quantum particles moving on 1D and 2D domains. Jensen and Koppe and Da Costa independently introduced a confining potential formalism showing that the effective constrained dynamics is subjected to a scalar geometry-induced potential; for the confinement to a curve, the potential depends on the curve's curvature function. Method: To characterize the $\pi$ electrons in polyenes, we follow two approaches. First, we utilize a weakened Coulomb potential associated with a spiral curve. The solution to the Schr\"{o}dinger equation with Dirichlet boundary conditions yields Bessel functions, and the spectrum is obtained analytically. We employ the particle-in-a-box model in the second approach, incorporating effective mass corrections. The $\pi$-$\pi*$ transitions of polyenes were calculated in good experimental agreement with both approaches, although with different wave functions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com