Multi-Patch Isogeometric Convolution Hierarchical Deep-learning Neural Network (2406.03307v1)
Abstract: A seamless integration of neural networks with Isogeometric Analysis (IGA) was first introduced in [1] under the name of Hierarchical Deep-learning Neural Network (HiDeNN) and has systematically evolved into Isogeometric Convolution HiDeNN (in short, C-IGA) [2]. C-IGA achieves higher order approximations without increasing the degree of freedom. Due to the Kronecker delta property of C-IGA shape functions, one can refine the mesh in the physical domain like standard finite element method (FEM) while maintaining the exact geometrical mapping of IGA. In this article, C-IGA theory is generalized for multi-CAD-patch systems with a mathematical investigation of the compatibility conditions at patch interfaces and convergence of error estimates. Two compatibility conditions (nodal compatibility and G0 (i.e., global C0) compatibility) are presented and validated through numerical examples.