Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Copula-based semiparametric nonnormal transformed linear model for survival data with dependent censoring (2406.02948v2)

Published 5 Jun 2024 in stat.ME and stat.AP

Abstract: Although the independent censoring assumption is commonly used in survival analysis, it can be violated when the censoring time is related to the survival time, which often happens in many practical applications. To address this issue, we propose a flexible semiparametric method for dependent censored data. Our approach involves fitting the survival time and the censoring time with a joint transformed linear model, where the transformed function is unspecified. This allows for a very general class of models that can account for possible covariate effects, while also accommodating administrative censoring. We assume that the transformed variables have a bivariate nonnormal distribution based on parametric copulas and parametric marginals, which further enhances the flexibility of our method. We demonstrate the identifiability of the proposed model and establish the consistency and asymptotic normality of the model parameters under appropriate regularity conditions and assumptions. Furthermore, we evaluate the performance of our method through extensive simulation studies, and provide a real data example for illustration.

Summary

We haven't generated a summary for this paper yet.