Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 TPS
Gemini 2.5 Pro 50 TPS Pro
GPT-5 Medium 32 TPS
GPT-5 High 30 TPS Pro
GPT-4o 67 TPS
GPT OSS 120B 452 TPS Pro
Kimi K2 190 TPS Pro
2000 character limit reached

An Axiomatic Approach to Loss Aggregation and an Adapted Aggregating Algorithm (2406.02292v1)

Published 4 Jun 2024 in cs.LG

Abstract: Supervised learning has gone beyond the expected risk minimization framework. Central to most of these developments is the introduction of more general aggregation functions for losses incurred by the learner. In this paper, we turn towards online learning under expert advice. Via easily justified assumptions we characterize a set of reasonable loss aggregation functions as quasi-sums. Based upon this insight, we suggest a variant of the Aggregating Algorithm tailored to these more general aggregation functions. This variant inherits most of the nice theoretical properties of the AA, such as recovery of Bayes' updating and a time-independent bound on quasi-sum regret. Finally, we argue that generalized aggregations express the attitude of the learner towards losses.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.