Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Limitations of Fractal Dimension as a Measure of Generalization (2406.02234v2)

Published 4 Jun 2024 in cs.LG, cs.AI, math.DS, and stat.ML

Abstract: Bounding and predicting the generalization gap of overparameterized neural networks remains a central open problem in theoretical machine learning. There is a recent and growing body of literature that proposes the framework of fractals to model optimization trajectories of neural networks, motivating generalization bounds and measures based on the fractal dimension of the trajectory. Notably, the persistent homology dimension has been proposed to correlate with the generalization gap. This paper performs an empirical evaluation of these persistent homology-based generalization measures, with an in-depth statistical analysis. Our study reveals confounding effects in the observed correlation between generalization and topological measures due to the variation of hyperparameters. We also observe that fractal dimension fails to predict generalization of models trained from poor initializations. We lastly reveal the intriguing manifestation of model-wise double descent in these topological generalization measures. Our work forms a basis for a deeper investigation of the causal relationships between fractal geometry, topological data analysis, and neural network optimization.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Youtube Logo Streamline Icon: https://streamlinehq.com