Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generator-Based Fuzzers with Type-Based Targeted Mutation (2406.02034v3)

Published 4 Jun 2024 in cs.SE

Abstract: As with any fuzzer, directing Generator-Based Fuzzers (GBF) to reach particular code targets can increase the fuzzer's effectiveness. In previous work, coverage-guided fuzzers used a mix of static analysis, taint analysis, and constraint-solving approaches to address this problem. However, none of these techniques were particularly crafted for GBF where input generators are used to construct program inputs. The observation is that input generators carry information about the input structure that is naturally present through the typing composition of the program input. In this paper, we introduce a type-based mutation heuristic, along with constant string lookup, for Java GBF. Our key intuition is that if one can identify which sub-part (types) of the input will likely influence the branching decision, then focusing on mutating the choices of the generators constructing these types is likely to achieve the desired coverages. We used our technique to fuzz AWSLambda applications. Results compared to a baseline GBF tool show an almost 20\% average improvement in application coverage, and larger improvements when third-party code is included.

Summary

We haven't generated a summary for this paper yet.