Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 45 tok/s
GPT-5 High 43 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Variance-reduced sampling importance resampling (2406.01864v1)

Published 4 Jun 2024 in stat.CO

Abstract: The sampling importance resampling method is widely utilized in various fields, such as numerical integration and statistical simulation. In this paper, two modified methods are presented by incorporating two variance reduction techniques commonly used in Monte Carlo simulation, namely antithetic sampling and Latin hypercube sampling, into the process of sampling importance resampling method respectively. Theoretical evidence is provided to demonstrate that the proposed methods significantly reduce estimation errors compared to the original approach. Furthermore, the effectiveness and advantages of the proposed methods are validated through both numerical studies and real data analysis.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (3)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube