Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Effective Time-Aware Language Representation: Exploring Enhanced Temporal Understanding in Language Models (2406.01863v2)

Published 4 Jun 2024 in cs.CL

Abstract: In the evolving field of NLP, understanding the temporal context of text is increasingly critical for applications requiring advanced temporal reasoning. Traditional pre-trained LLMs like BERT, which rely on synchronic document collections such as BookCorpus and Wikipedia, often fall short in effectively capturing and leveraging temporal information. To address this limitation, we introduce BiTimeBERT 2.0, a novel time-aware LLM pre-trained on a temporal news article collection. BiTimeBERT 2.0 incorporates temporal information through three innovative pre-training objectives: Extended Time-Aware Masked LLMing (ETAMLM), Document Dating (DD), and Time-Sensitive Entity Replacement (TSER). Each objective is specifically designed to target a distinct dimension of temporal information: ETAMLM enhances the model's understanding of temporal contexts and relations, DD integrates document timestamps as explicit chronological markers, and TSER focuses on the temporal dynamics of "Person" entities. Moreover, our refined corpus preprocessing strategy reduces training time by nearly 53\%, making BiTimeBERT 2.0 significantly more efficient while maintaining high performance. Experimental results show that BiTimeBERT 2.0 achieves substantial improvements across a broad range of time-related tasks and excels on datasets spanning extensive temporal ranges. These findings underscore BiTimeBERT 2.0's potential as a powerful tool for advancing temporal reasoning in NLP.

Citations (1)

Summary

We haven't generated a summary for this paper yet.