Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimizing the Optimal Weighted Average: Efficient Distributed Sparse Classification (2406.01753v1)

Published 3 Jun 2024 in cs.LG, cs.DC, and stat.ML

Abstract: While distributed training is often viewed as a solution to optimizing linear models on increasingly large datasets, inter-machine communication costs of popular distributed approaches can dominate as data dimensionality increases. Recent work on non-interactive algorithms shows that approximate solutions for linear models can be obtained efficiently with only a single round of communication among machines. However, this approximation often degenerates as the number of machines increases. In this paper, building on the recent optimal weighted average method, we introduce a new technique, ACOWA, that allows an extra round of communication to achieve noticeably better approximation quality with minor runtime increases. Results show that for sparse distributed logistic regression, ACOWA obtains solutions that are more faithful to the empirical risk minimizer and attain substantially higher accuracy than other distributed algorithms.

Summary

We haven't generated a summary for this paper yet.