Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
11 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Adaptive discretization algorithms for locally optimal experimental design (2406.01541v1)

Published 3 Jun 2024 in math.OC, math.ST, and stat.TH

Abstract: We develop adaptive discretization algorithms for locally optimal experimental design of nonlinear prediction models. With these algorithms, we refine and improve a pertinent state-of-the-art algorithm in various respects. We establish novel termination, convergence, and convergence rate results for the proposed algorithms. In particular, we prove a sublinear convergence rate result under very general assumptions on the design criterion and, most notably, a linear convergence result under the additional assumption that the design criterion is strongly convex and the design space is finite. Additionally, we prove the finite termination at approximately optimal designs, including upper bounds on the number of iterations until termination. And finally, we illustrate the practical use of the proposed algorithms by means of two application examples from chemical engineering: one with a stationary model and one with a dynamic model.

Citations (2)

Summary

We haven't generated a summary for this paper yet.