Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic Input Feature Relevance via Spectral Neural Networks (2406.01183v2)

Published 3 Jun 2024 in cs.LG, cond-mat.dis-nn, cond-mat.stat-mech, and cs.AI

Abstract: In machine learning practice it is often useful to identify relevant input features, so as to obtain compact dataset for more efficient numerical handling. On the other hand, by isolating key input elements, ranked according their respective degree of relevance, can help to elaborate on the process of decision making. Here, we propose a novel method to estimate the relative importance of the input components for a Deep Neural Network. This is achieved by leveraging on a spectral re-parametrization of the optimization process. Eigenvalues associated to input nodes provide in fact a robust proxy to gauge the relevance of the supplied entry features. Notably, the spectral features ranking is performed automatically, as a byproduct of the network training, with no additional processing to be carried out. The technique is successfully challenged against both synthetic and real data.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com