Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
107 tokens/sec
Gemini 2.5 Pro Premium
58 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
101 tokens/sec
DeepSeek R1 via Azure Premium
84 tokens/sec
GPT OSS 120B via Groq Premium
463 tokens/sec
Kimi K2 via Groq Premium
200 tokens/sec
2000 character limit reached

Neural Quantum States in Variational Monte Carlo Method: A Brief Summary (2406.01017v1)

Published 3 Jun 2024 in cond-mat.str-el and quant-ph

Abstract: In this note, variational Monte Carlo method based on neural quantum states for spin systems is reviewed. Using a neural network as the wave function allows for a more generalized expression of various types of interactions, including highly non-local interactions, which are closely related to its non-linear activation functions. Additionally, neural networks can represent relatively complex wave functions with relatively small computational resources when dealing with higher-dimensional systems, which is undoubtedly a "flattening" advantage. In quantum-state tomography, the representation method of neural quantum states has already achieved significant results, hinting at its potential in handling larger-sized systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)